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We perform an extensive numerical investigation on the retrieval dynamics of the synchronous Hopfield
model, also known as Little-Hopfield model, up to sizes of 218 neurons. Our results correct and extend much
of the early simulations on the model. We find that the average convergence time has a power law behavior for
a wide range of system sizes, whose exponent depends both on the network loading and the initial overlap with
the memory to be retrieved. Surprisingly, we also find that the variance of the convergence time grows as fast
as its average, making it a non-self-averaging quantity. Based on the simulation data we differentiate between
two definitions for memory retrieval time, one that is mathematically strict, �c, the number of updates needed
to reach the attractor whose properties we just described, and a second definition correspondent to the time ��

when the network stabilizes within a tolerance threshold � such that the difference of two consecutive overlaps
with a stored memory is smaller that �. We show that the scaling relationships between �c and �� and the
typical network parameters as the memory load � or the size of the network N vary greatly, being �� relatively
insensitive to system sizes and loading. We propose �� as the physiological realistic measure for the typical
attractor network response.
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I. INTRODUCTION

Attractor neural networks are paradigmatic in computa-
tional neuroscience research. They present among other in-
teresting properties, the possibility that, by local adjustment
of the synaptic weights �1�, specific patterns of activity be
stored as dynamic attractors. The basin of attraction of such
attractors is usually finite, endowing the network with the
property of content addressability �2�. These networks are
robust with respect to synaptic as well as learning noise and
degrade gracefully with connection removal �for an exten-
sive discussion on the attractor model and its physiological
relevance see Ref. �3��.

But to be definitely plausible an attractor network must
generate an output in physiologically realistic times. Neurons
are slow processors, an action potential lasting approxi-
mately 1 ms and the typical speed of action potential propa-
gation along thin axons being in the range 0.5–5 mm/ms
�4,5�. If an attractor neural network is to be a candidate
model for short-term-memory retrieval, for instance, when
scaled to physiological sizes �109−1010 neurons� it should
give a meaningful output in a number of time steps that when
translated to physical time should be as low as 40 ms and not
larger than, say, 200 ms �6� �see Ref. �7� for a quick review
on short-term memory�. Therefore it is of utmost importance
to evaluate how the typical response times of the attractor
networks scale with parameters like the system size, memory
storage loading and the degradation level of the input. The
response time should be related to the convergence time, the
time elapsed between the presentation of the initial state �in-

put� and the convergence to a stable attractor �output�.
Interestingly, the convergence time of artificial neural net-

works is one of the few quantities that have resisted theoret-
ical analysis. In fact, even numerical studies have been few
and restricted to the synchronous Hopfield model, or Little-
Hopfield model �1,8�. Kanter �9� performed simulations for
fully connected systems of �103 neurons, and found that the
average convergence time to a stable state was logarithmic
on N, the size of the net. It also depends on the initial overlap
with the pattern to be retrieved. Surprisingly, Kanter also
found that the variance of the distribution of convergence
times grows with N, with the same scaling as the mean.

Some time later Kohring �10�, using a multispin coding
technique developed by Penna and de Oliveira �11�, was able
to perform a similar study on much larger systems, N�105.
His results disagree with those of Kanter, because he finds
that for initial overlaps near to the critical value, the conver-
gence time deviates from a simple logarithmic growth al-
ready for N�104. In any case his main conclusion was that
much bigger systems are needed to draw sound conclusions.
Interestingly, for the system sizes simulated by Kohring, the
variance of the distribution is not monotonous, and tends to
decrease for large values of N. He speculates that the mecha-
nism responsible for this decrease is the disappearance of
metastable states near the memory for increasing N.

The loading of the network is measured by �=M /N, the
relative number of stored memories. Up to a certain critical
value, �c�m0�, there is always �in the infinite size limit� a
value of the initial overlap m0 above which the network al-
ways converges to the desired memory. The behavior of the
convergence time as the critical value of � is approached
was studied by Ghosh et al. �12�. Using the fact that the
relaxation time for spin glasses is thought to follow a power
law or a Vogel-Fulcher law ���exp�A / �T−Tc��, where T is
the temperature�, they tried to determine whether the conver-
gence time of neural networks belongs to one of these re-
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gimes, using system sizes as large as N=16 000. Instead,
they found that it follows a stretched exponential law,
��exp�−A�N���c−����, with ��0.6. But they warn that
much bigger systems are needed to confirm these results.

More recently, Frolov and Husek �13� have performed
simulations from which they draw the conclusion that the
convergence time grows as N�, where ��1 is a number that
grows with � and does not depend on the initial overlap with
the pattern to be retrieved.

The only exact results available for convergence times are
those of Komlos and Paturi �14�. Unfortunately, they concern
only the case of low loading of the network, for a number of
patterns M �N / ln N they find that the convergence time is of
order ln ln N. For large loading, M =�N it is only possible to
show that, for small �, all initial states at a distance �N from
the memory to retrieve will end up, in constant time, at a
distance exp�−1/4�� �for the exact definition of the increas-
ing function ���� see Ref. �14��. Some bounds have also
been obtained, but they turn out to be so loose that they have
no practical value.

The aim of the present work is to revisit the convergence
time problem for the Little-Hopfield model. With the newly
available computer power we are able to perform extensive
numerical simulations up to 218 neurons.

II. METHODS

The Little-Hopfield model consists of a network com-
posed of N binary neurons interconnected, where the weight
of each connection is given by Hebb’s rule,

Jij =
1

N
�
	


i
	
 j

	, Jii = 0. �1�

The set of patterns 
	� �−1,1�N with 	=1, . . . ,M is called
the set of stored patterns and it is randomly chosen without
bias. We have studied the parallel dynamics of this model, at
T=0, where the state of all the neurons is updated at each
time step by

�i
t = sgn	�

j

Jij� j
t−1
 . �2�

Another possibility is to study the serial dynamics of the
model, where at each time step only the state of a randomly
chosen neuron is updated. We have preferred to study the
parallel dynamics because in this case, for a given set of
stored patterns, the final state of the networks is solely deter-
mined by the initial state. One of its drawbacks is the fact
that the final state of the dynamics is not always a fixed point
�as happens with asynchronous dynamics�. There can also
appear 2-cycles, where the state of the network oscillates
between two different configurations. Nevertheless, we show
below that the difference between the two configurations in a
cycle is very small for large networks.

We have performed simulations for systems of up to 218

neurons in the regime of parallel dynamics. We have used the
multineuron coding of Penna and de Oliveira �11�, where
only one bit is used to encode the state of each neuron. As
we are interested in the properties of the network in the re-

gime of recall of one of the memories, the configurations that
we have selected as initial states have a given overlap with
the memory to be retrieved. In the following the overlap of
the state of the network with the memory will be called mag-
netization. For large values of �, after the first few time steps
the number of neurons that change their state before the fixed
point is reached is only a very small fraction of the total. The
improvement proposed by Stiefvater et al. �15� takes this
into account and allows us to reduce significantly the time of
computation. We have recorded the time taken by the net-
work to reach the fixed point. In the case of 2-cycles, we
have defined as convergence time the number of time steps
needed to reach the first configuration of the cycle. In both
cases only attractors with final overlaps larger than 0.9 are
considered. We have taken the mean of the convergence time
found for several realizations of the stored patterns. We re-
mark here that for every realization we have used only one
starting point, so as to maximize the independence of our
runs.

Naturally, for finite network sizes not all the runs con-
verge to the memory attractor. Besides the minimal overlap
criterion we have also set a limit time after which noncon-
vergence is assumed. This limit time is of the order of 5–10
times the average convergence time. The correctness of this
criterion is somewhat confirmed by the fact that the largest
convergence times recorded were usually much smaller than
the limit time. In Fig. 1 the fraction of nonconverging initial
conditions is displayed as a function of �. The critical value
of �, �c�m0�, is the value below which all initial conditions
�with a definite overlap� converge, and above which none
converge �2�, for an infinite size system. For the initial over-
lap used in this paper m0=0.8, the critical � could be deter-
mined by finite size scaling. According to Fig. 1, our estima-
tion of it gives 0.14��c�0.8��0.141 which agrees with the
results obtained in Ref. �15�.

III. RESULTS

A. The attractors

Attractors in the Hopfield-Little model are either fixed
points or cycles of period 2. We find that the fraction of

FIG. 1. Fraction of initial conditions that did not converge in our
simulations. The initial overlap is m0=0.8. The lines are only guides
to the eye.
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retrieval states that are cycles increases with N �see Fig. 2�.
But, interestingly, we also find that the difference between
the two configurations in each cycle tends to zero. We have
measured this by taking the difference between the magneti-
zation of both states �see Fig. 3�. Notice that from this dif-
ference only a lower bound to the number of differing bits
can be derived; for example, two states having the same
magnetization need not be equal.

In the statistical mechanics calculations �16� it is obtained
that, for values of � smaller than the critical, the final states
are only fixed points of the dynamics. But the statistical me-
chanics results are only valid in the infinite size limit. Thus,
for this to be the correct result, for finite values of N one of
two things must happen: either the fraction of cycles van-
ishes with increasing N, or the fraction of cycles does not
vanish but it is the overlap between its configurations that
does. Our simulations show that the second possibility is the
correct one. Thus, even though the number of cycles in-
creases with N, this should not be a hindrance, as the two
configurations in the cycle turn out to be almost identical.

B. The convergence time

For the average convergence time, our results are dis-
played in Fig. 4, as a function of the loading of the network.

For loadings smaller than 0.06 finite size effects are present,
therefore in the rest of the paper we restrict ourselves to
consider only larger loadings. Our results �see Fig. 5� differ
from those found in Refs. �9,10� but are similar to those
found in Ref. �13�, the average convergence time seems to
follow a power law for large N. The exponent of this power
law grows with � �see Fig. 5�b��. At variance with what was
reported in Ref. �13�, we find that the exponent depends also

FIG. 2. Average fraction of final states that are cycles. The ini-
tial overlap is m0=0.8. The lines are only guides to the eye.

FIG. 3. Average difference of magnetization between the two
states of a cycle. The initial overlap is m0=0.8. The lines are only
guides to the eye.

FIG. 4. Convergence times as a function of memory storage.
The initial overlap is m0=0.8. The lines are only guides to the eye.
Error bars are smaller than the symbols.

FIG. 5. �A� Convergence time for several values of �=M /N
�symbols�. The initial overlap is m0=0.8. Error bars are smaller than
the symbols. The lines shown are best fits. �B� The corresponding
exponents of the best fits.
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on the initial state of the network, at least for the values of N
shown �see Fig. 6�. It is obvious however that these expo-
nents must change as N grows; otherwise it would imply that
there exists a value of N where the curves intersect and even-
tually change their “ordering.” This is not possible because
for the same value of N the convergence times must neces-
sarily be decreasing functions of m0. Nevertheless, our re-
sults seem to suggest that for very high values of N the
convergence times for different initial states should be very
close.

C. The convergence time variance

For the variance of the convergence time, the behavior we
find is a very interesting one. As mentioned in the introduc-
tion, from his simulations, Kanter concluded that, as a func-
tion of N, the variance grows at approximately the same rate
as the average value. Kohring, studying larger systems,
showed that this growth seemed only to be a transient after
which the variance decreased. But he shows only the case of
initial overlap m0=0.4. We find in our simulations that the
situation described by Kohring also seems to be a transient
�see Fig. 7�. We find that even though the variance increases
for small values of N and then decreases for intermediate
values, in the asymptotic limit it increases again, this time
with no bound �as far as we can see�. This asymptotic be-
havior is common to all the values of the initial overlap that

we have analyzed. On the other hand, the initial “bump” of
the variance seems to be highly dependent on the initial over-
lap, being biggest for the smallest overlaps and seems to
disappear for m0�0.6.

Some of the features of the variance can be understood by
looking at the trajectories followed by the network in the
dynamics �see Fig. 8�. It is easy to see that there are two
different effects responsible for the fact that there are many
different routes leading to the same fixed point. The fact that,
for small values of N, the beginning of the trajectories can be
very different for different initial states seems to show that
the basin of attraction is not very “deep,” or at least seems to
be very irregular, far from the bottom �notice how different
the trajectories are in Fig. 8�a��. On the other hand, for large
values of N the basin seems to be much more regular, or
more isotropic, the trajectories almost coincide in their be-
ginning �see Fig. 8�b��. But now it is the bottom of the basin
that seems to be very irregular, in such a way that for some
initial states the network wanders around the bottom of the
basin for some time steps before finding the true minimum.

The convergence displayed in Figs. 8�c� and 8�d� make us
question the practical value of finding the convergence time
to the true mathematical attractor of the network. After a
close inspection of Fig. 8�c�, it is evident that the network
has already converged around 10 time steps with very low
variance among different runs, however the attractor stabi-
lizes at t=15, 23, and 30 for three different runs. A similar
thing happens in Fig. 8�d�.

We thus decided to redo the graph of Fig. 5�a� using as a
convergence criterion a finite precision on the overlap, in
other words, we considered that a pattern has settled at time
�� if �m����−m���−1����. With this new definition we ob-
tain the surprising result displayed in Fig. 9. It shows that
this convergence time is actually independent of the size of
the system for low memory loading while it surprisingly de-
creases as we approach the critical loading value.

Figures 10�a� and 10�b� show the typical behavior of
the convergence times for moderate ��=0.110� and high
��=0.135� memory loading as we change the precision �.
We observe that the time retrieval properties seem to be ro-

FIG. 6. �A� Convergence time for several values of m0, the
overlap of the initial state �symbols�. The loading is �=0.1. Error
bars are smaller than the symbols. The lines shown are best fits. �B�
The corresponding exponents of the best fits.

FIG. 7. Variance of the convergence time for several values of
m0, the overlap of the initial state �symbols�. The lines shown are
only guides to the eye.
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bust to the choice of precision. For low precision the conver-
gence times are relatively small and insensitive to system
size, that seems to hold true for moderate storage levels even
as we decreased �. When � is close the critical storage ca-
pacity the network presents a pronounced decrease of re-
trieval time. Figure 11 displays the same data as a function of
memory load � for two different precision values.

IV. DISCUSSION AND CONCLUSIONS

The results presented in this paper show that the details of
the retrieval dynamics of the Little-Hopfield model are still a
matter of scientific debate. We obtain that for a fairly large
region of systems parameters, m0�0.4 and 0.08����c,
the average retrieval time is a power law of the form
�̄c
N���,m0� where � range from 0.1 to 1, and seems to be
slightly increasing with N. That contradicts the early results
�9,10� and agree somewhat with Ref. �13�. We find no con-
clusive evidence in our data for the exponential behavior
proposed in Ref. �12� near saturation. We also observe that
the behavior of the convergence time variance is much more

unusual than what was reported in Ref. �10�. After a transient
nonmonotonous behavior, the variance seems to increase
regularly and apparently without bound with the system size.
Its growth with N would not be a problem if it was smaller
than the corresponding growth of the mean value. However,
our simulations show clearly that this is not the case �see Fig.

FIG. 8. Overlap as a function of time, for sev-
eral different initial states �symbols�. The lines
shown are only guides to the eye. �A� N=4096,
m0=0.4; �B� N=4096, m0=0.6; �C� N=262 144,
m0=0.4; �D� N=262 144, m0=0.6. The number
of stored memories is M =0.1N. The arrows with
the symbols show where the corresponding line
reaches its final state.

FIG. 9. Convergence times for a precision of �=0.0001 as a
function of the size of the network for several values of �=M /N,
for initial state m0=0.8. The lines shown are only guides to the eye
and the error bars are smaller than the symbols.

FIG. 10. Convergence times as a function of the system size for
several values of the precision � for �=0.110 and 0.135. The initial
state is again m0=0.8.
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12�, the quotient between both quantities is of order 1
throughout the range of values of N that we have explored. If
this was true for all values of N, it would mean that the
average time �divided by some suitable function of N� is not
a self-averaging quantity, i.e., its value would differ signifi-
cantly for different initial states, even in the infinite N limit.
It is interesting to notice that many other quantities are self-
averaging. For example, the final overlap and, most interest-
ingly, also the overlap at each time step. We have checked
that the distributions for the convergence times �c are well
described by Gaussians. We have also analyzed our results
using the median of the convergence time distribution, as
well as averages with subsamples with the 50% fast times. In
both cases the results agree with the average results using the
full samples. This rules out the possibility that our findings
are artifacts coming from large time values in the tail of the
distribution.

The correct theoretical interpretation of the properties of
the convergence time �c can provide important insights to the
general understanding of frustrated systems approaching
equilibrium. As for physiological adequacy of the model the
results for �c would be discouraging. For moderate storage
levels ��0.10–0.12, and relatively close initial states
m0=0.8, we obtain �c�N1/3 what would indicate a multipli-
cative factor of order 20 when we go from system sizes of
218 to more realistic sizes of 231. Even if we take the opti-
mistic view that a network update can be accomplished in
2 ms �1 ms action potential and 1 ms axonal delay and inte-
gration time� it implies a total time of 400 ms for conver-
gence, that can be considered physiologically too slow.

However, as was pointed out earlier, the model’s retrieval
dynamics seems to have two well-defined regimes. That gets
more evident with the increase of size of the network �see
Fig. 8�. The first regime corresponds to a fast overlap in-
crease up to more than 99.99% of its final value. The times

involved in this first phase have very small variance among
realizations. The second regime seems to correspond to a
search of the true attractor in a very irregular energy land-
scape. The second phase results in a correction smaller than
0.01% in the state of the network, but takes usually much
longer than the first phase and it is responsible for most of
the scaling properties described in this paper, such as the
power law dependence with size and the odd variance
behavior.

If we take �� for a reasonable value of �, as the true
relevant response time of the network the results become
much more promising. We observe that up to the sizes simu-
lated in this work the times �� are insensitive to the system
size and fairly insensitive to the memory storage load. In
fact, it decreases with � as it approaches the critical value �c.
But this result is to be taken with caution since the basins of
attraction are too narrow �2� and Fig. 9 displays only the
trials that did converge.

We therefore conclude that the Little-Hopfield network
have a response time in terms of number of steps that could
be compatible with the characteristic times in biology, both
physiological and behavioral, if we consider as the relevant
time parameter the fixed precision convergence time ��.
Since �� is usually small this result highlights the importance
of the theoretical calculations for the first few time steps of
the retrieval dynamics started by Gardner et al. �17�, and
developed into the statistical neurodynamics �18–20� and re-
cently redone with a generating functional approach �21�.
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